

Д.Н. Кондратьев 1 , А.В. Зосимов 1 , Ю.Н.Киташов 2 , А.В.Назаров 2

1 — НИИХТ 2-РГУ нефти и газа (НИУ) имени И.М.Губкина

<u>dn@niixt.ru</u>

Актуальность задачи и области применения Существующие методы прямого ожижения

Ожижение твердого органического вещества как альтернативный источник нефти и нефтепродуктов

Этот аспект может быть актуальным для стран, где нет собственной нефти, а ее импорт дорогой, в ряде случаев это может быть актуальным в отдаленных регионах России по причине дороговизны доставки нефти и нефтепродуктов.

Ожижение твердого органического вещества как способ утилизации отходов

Рассматриваемый способ позволяет экономически эффективно перерабатывать широкий спектр отходов с получением углеводородов и полезных побочных продуктов.

Сравнение существующих способов ожижение твердого органического вещества:

	Параметры процесса		
Способ	T, °C	Р, МПа	kt
Процесс Ф.Бергиуса	300-400	6-25	есть
Ожижение в сверхкритических средах	250-650	15-45	отсутствует
Гидрогенолиз	200-350	6-27	есть
Деструктивное гидрокарбонилирование	200-400	5-12	есть
Воздействие высоковольтных разрядов в присутствии воды	высоковольтных разрядов в присутствии воды Возможен при в		отсутствует

Органическое вещество в ожижаемом сырье (растительная биомасса, лигнин, торф уголь, иловый кек, помет и др.), в большинстве случаев, представлено твердыми полимерами, сконденсированными сопряженными соединениями циклической и ароматической природы, связанными между собой силами межмолекулярного взаимодействия.

Задача процесса ожижения состоит в проведений реакций деполимеризации сконденсированного вещества и гидрирования продуктов деполимеризации. В момент высоковольтного импульсного разряда в смеси сырья, органического растворителя (его рецикла) и воды протекают следующий процессы:

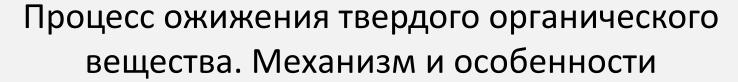
О В канале разряда происходит разогрев вещества до сотен тысяч градусов Кельвина и его резкое расширении. Резкое расширение вещества создает высокие давления до нескольких тысяч МПа внутри канала разряда и в локальной области непосредственно с ним. Все это, включая непосредственную эмиссию быстрых электронов в процессе разряда, приводит к образованию активных частиц: собственно быстрых электронов (е) с энергией более 5кэВ и временем жизни до 400мкс, частиц радикалов: *О, *H, *ОН. Активные частицы взаимодействует с твердым органическим веществом ожижаемого сырья по радикальному механизму и механизму электронного удара с образованием низкомолекулярных жидких органических продуктов.

- Вследствие быстрого расширения вещества внутри канала разряда возникает ударная волна, которая вызывает кавитационные явления во всем объеме реакционной смеси. Процесс кавитации характеризуется возникновением паровых микрополостей и быстрым их схлопыванием. Во время схлопывания кавитационных полостей также достигаются экстремально высокие значения давлений и температур с переводом локальной части вещества в сверхкритическое состояние. В свою очередь некоторое количество сверхкритического вещества позволяет проводить ожижение угля без прямого воздействия активных частиц (e, *O, *H, *OH).
- Возникновение ударной волны и обусловленных ее действием кавитационных явлений также обуславливают протекание процессов, не связанных с ожижением органической массы твердого сырья, но способствующих этому это процессы дробления, процессы интенсификации диффузии вещества реакционной смеси в центр частицы сырья и продуктов ожижения обратно.

Ключевым моментом процесса ожижения твердых органических субстанций является жидкая среда, в которой осуществляется импульсный высоковольтный разряд. В качестве такой среды наилучшим образом подходит смесь воды и углеводородов (кубового остатка ректификации полученной в процессе ожижения углеводородной смеси).

Роль воды сводится главным образом к следующему:

- Вода является «поставщиком» активных частиц-радикалов: *О, *ОН, *Н. Радикалы кислорода и наиболее долгоживущий гидроксил-радикал, наряду с электронным ударом преимущественно запускают реакции деполимеризации органического вещества сырья, в то время, как атомарный водород участвует в реакции гидрирования, в т.ч. низкомолекулярных соединений в момент их образования.
- о Наличие воды необходимо в качестве одного из компонентов сверхкритической жидкости, локально образующейся в процессе кавитации.
- Наличие воды существенно уменьшает диэлектрическую прочность среды и облегчает возникновение высоковольтного разряда в слое жидкости с частицами ожижаемого сырья.



Роль углеводородов обусловлена тем, что:

- Углеводороды являются дополнительным источником водорода, а их рецикл обеспечивает лучшее соотношения Н:С в получаемых продуктах, сводя к минимуму содержание непредельных соединений и смол, вредных для моторных топлив.
- Также как и наличие воды, наличие углеводородов необходимо в качестве одного из компонентов сверхкритической жидкости, локально образующейся в процессе кавитации. Процесс ожижения в сверхкритической среде идет наилучшим образом при наличии органических углеводоров и воды, хотя может протекать только в среде воды или углеводорода, находящихся в сверхкритическом состоянии.

Иллюстрация роли углеводородов

Ожижаемый материал	Степень конверсии, % (суммарный энерговклад 12кВт/т, рабочее напряжение 14кВ)		Выход углеводородов (фракции НК92°С, КК412°С, средняя теплота сгорания 41МДж/кг) в пересчете на органическую часть ожижаемого материала, %	
	Среда ожижения		Среда ожижения	
	вода	вода + рецикл	вода	вода + рецикл
		углеводородов		углеводородов
ТБО (35% влажности)	32	41	32	41
Древесные опилки	14	98	12	52
Торф низинный	11	76	8	57
Бурый уголь (зольность 43%)	16	44	14	43

Реактор для проведения процесса ожижения Основные конструкционные решения

Конструкция реактора имеет ряд отличительных признаков, среди которых:

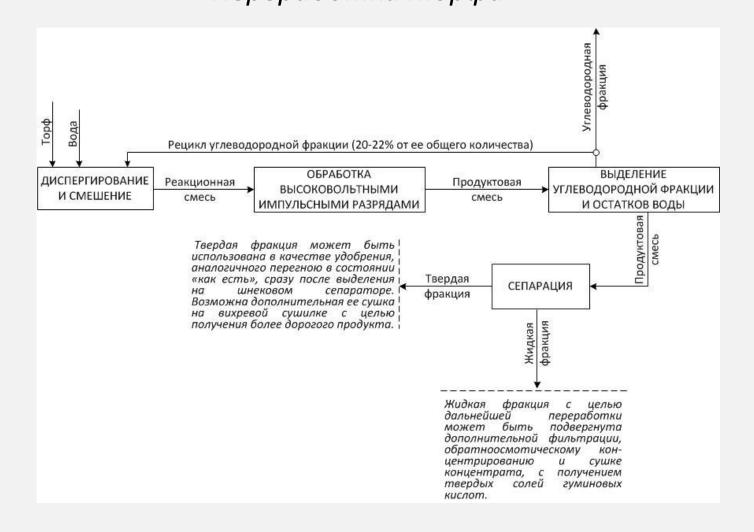
- о модульность конструкции
 - Позволяет унифицировать конструкцию реакторов на разные мощности по углю, упростить их обслуживание и ремонт.
- многоразрядный электрод
- Позволяет увеличить длину разряда при той же его мощности, тем самым уменьшить энерговклад в процесс ожижения за счет большей площади соприкосновения поверхности разряда с сырьем и меньших потерь активных частиц на рекомбинацию.
- о решения по газовому разряднику

Для формирования импульсного разряда, в электрической схеме необходим элемент типа разрядника. Возможны два варианта: размещение разрядника в виде отдельного элемента вне реактора (вакуумный разрядный элемент) или непосредственно в самой секции реактора. Выбор варианта зависит от производительности реактора. Первый вариант предпочтительнее при производительности до 3т/час, второй, при производительности более 3т/час, поскольку позволяет существенно улучшить энергетические показатели процесса в целом.

Реактор для проведения процесса ожижения Основные конструкционные решения

Реактор состоит из отдельных модульных ячеек, количество которых выбирается, исходя из требуемой (проектной) производительности реактора.

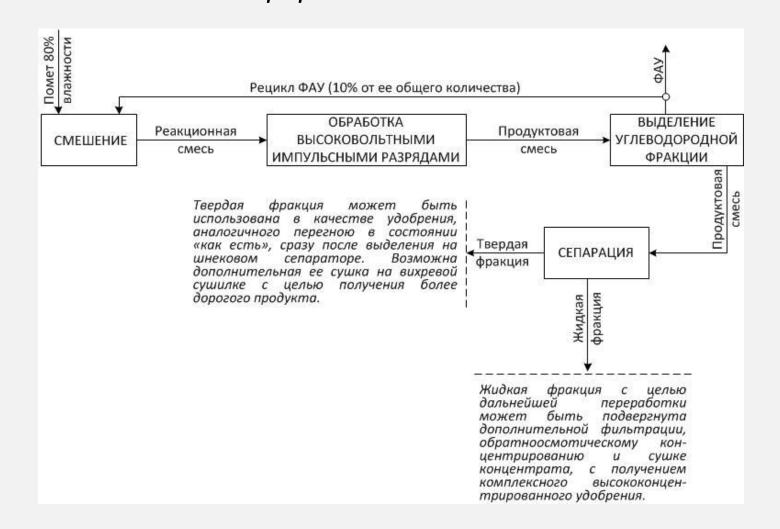
Сырье, 100%	Получаемые продукты после разделения продуктовой смеси за вычетом балансового количества рециркулируемого органического вещества	Свойства продуктов и их применение	Энергетические затраты на переработку
Лигнин	Фракция ароматических углеводородов Минерально-органическая нерастворимая часть	КК138, ОЧ(и) 108, содержание бензола 3,6% Зольный нерастворимый остаток, органические нерастворимые соединения – продукты окислительной деструкции. Зольность 23%	16кВт/т
	Водно-щелочной сток	Водный раствор преимущественно гид- рооксидов и карбонатов щелочных металлов.	



Переработка растительной биомассы

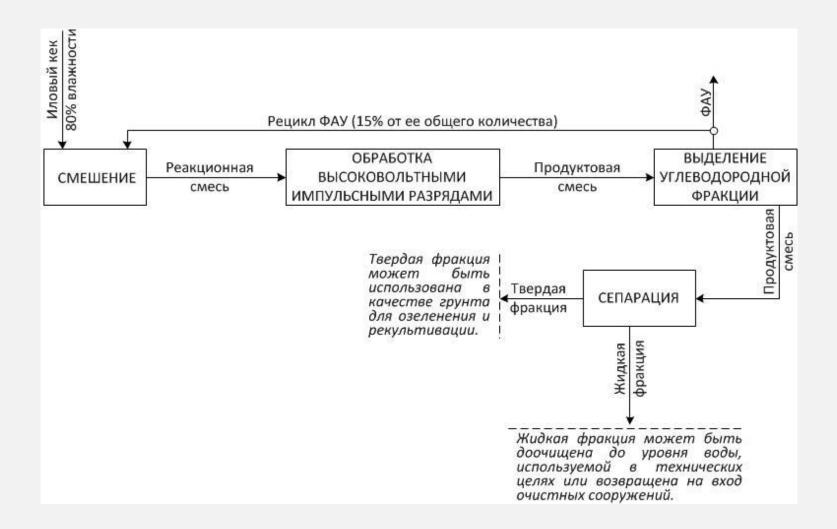
Сырье, 100%	Получаемые продукты после разделения продуктовой смеси за вычетом балансового количества рециркулируемого органического вещества	Свойства продуктов и их применение	Энергетические затраты на переработку
пилки,	Фракция ароматических углеводородов	КК122, ОЧ(и) 114, содержание бензола 2,7%	
асса (древесные опилки солома, лузга и т.п.)	Минерально-органическая нерастворимая часть	Зольный нерастворимый остаток, органические нерастворимые соединения – продукты окислительной деструкции.	14кВт/т
Биомасса	Водно-щелочной сток	Водный раствор преимущественно гид- роокидов и карбонатов щелочных металлов.	

Переработка торфа



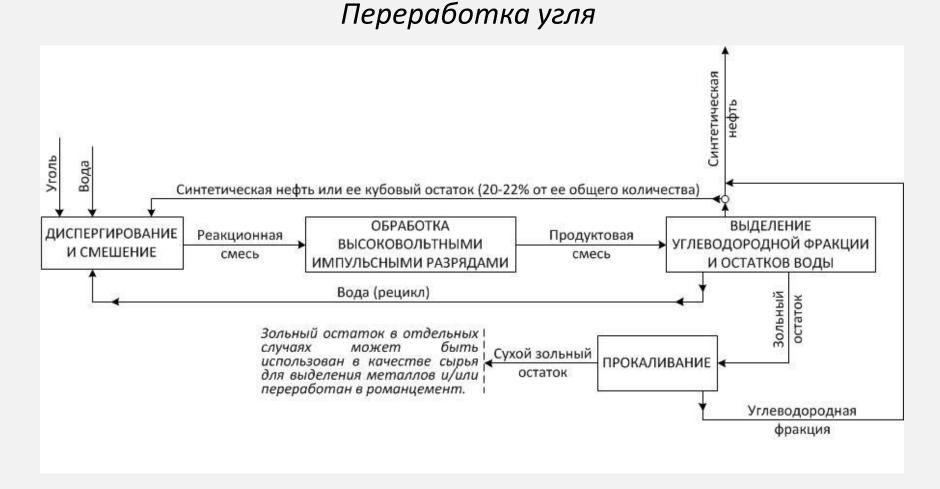
Получаемые продукты Свойства продуктов и Энергетические Сырье, 100% после разделения их применение затраты на продуктовой смеси за стадию вычетом балансового **вин**эжижо количества рециркулируемого органического вещества KK267°C, HK82°C. Углеводородная фракция на 82% состоит И3 ароматических углеводородов. Углеводородные газы C1-C4 практически полностью используются переработки на этапе Горф нефти моторные $14\kappa B\tau/\tau$ топлива Биологически активный Может рассматриваться твердый компонент качестве аналога перегноя. Водный сток Водный раствор солей гуминовых и фульвокислот, иных аммонийных солей.

Выход углеводородной фракции 14-30%



Переработка помета

	Сырье, 100%	Получаемы после раз продуктово вычетом ба колич рециркул органическо	вделения ой смеси за алансового ества ируемого	Свойства продуктов и их применение	Энергетические затраты на переработку
	ır v)	Фракция аром углеводородо Биологически твердый комп	в активный	КК126, ОЧ(и) 109, содержание бензола 2,9% Может рассматриваться в качестве аналога перегноя.	
CHNG	D ₃ [O] CO ₂ +	Солевой сток		Водный раствор преимущественно гид- роокидов и карбонатов щелочных металлов,	14-16кВт/т
H N	$\bigcup_{N \mid H} CO_2 +$	NO ₂ + NH ₃		солей гуминовых и фульвокислот, аммонии- йных солей.	



Получаемые продукты Свойства продуктов и Энергетические Сырье, 100% после разделения их применение затраты на продуктовой смеси за переработку вычетом балансового количества рециркулируемого органического вещества Фракция ароматических KK124, ОЧ(и) 112. бензола углеводородов содержание Иловый кек (80%w) 3.1% Твердый остаток Стабильные органисоединения ческие 14кВт/т высокой зольностью (до 46%) Солевой сток Слабый раствор солей преимущественно шелочных Н шелочноземельных металлов.

Сырье, 100%	Получаемые продукты после разделения продуктовой смеси за вычетом балансового количества рециркулируемого органического вещества	Свойства продуктов и их применение	Энергетические затраты на переработку
Ископаемый уголь	Минеральный остаток	НК196°С, КК460°С, содержание дизельной фракции (КК350°С) — 74%. ЦЧ дизельной фракции 52. Зольный остаток угля пригоден для приготовления романцемента. Возможно предварительное выде-	10-12кВт/т
Иског	Углеводородные газы C1-C4	ление металлов. Могут использоваться в качестве источника технологического тепла при дальнейшей переработке продуктов ожижения.	

Переработка угля

- о Выход нефти из бурого угля и каменного угля 36-52%
- о Выход газов из бурого угля 5-16%
- о Выход газов из каменного угля 3-9%
- Выход минерального остатка из бурого и каменного угля 16-42%
 Свойства синтетической нефти до ее переработки. Пример.

Параметр Выход фракций %, выкипающих до	Значение			
температуры:				
- 200C	13,8			
- 300C	34,7			
- 350C	87,5			
Давление насыщенных паров, кПа	66,7			
(мм.рт.ст.)				
Плотность при 20С, кг/м ³	832			
Вязкость при 20С, мПа*с	14,7			

Пример решения по модульному заводу переработки угля (2т/час) с целью получения ДТ (0.7т/час)

СПАСИБО ЗА ВНИМАНИЕ